2009 Durban Invitational World Youth Mathematics Intercity Competition

青少年数学国际城市邀请赛

个人赛试题

答题指引:

- 请勿翻开此页,直到听到答题指令为止。
- 请在下一页的对应位置填写队名、您的姓名及编号.
- 试题包括填充题 12 题,每题 5 分; 计算证明题 3 题,每题 20 分. 本卷总分 120 分.
- 填充题只须在空格内填写**阿拉伯数字**答案,以其它文字书写一 律不计分,不须计算过程,若题目有不只一个答案,则全部答 对才给分.
- 计算证明题必须填写详细计算过程或证明,根据答题情况给分.
- 本卷答题时间: 120 分钟.
- 不得使用任何电子计算器具.
- 请勿使用红色笔迹作答.
- 答题结束后,将回收本卷所有试题和草稿纸.

2009 Durban Invitational World Youth Mathematics Intercity Competition

个人赛试题

答	题时间:	120 分	·钟		2009/	07/08 南	非 德班
队	名:		_姓名:	编	号:	得分	:
第-	一部份:	填充题,	请将答案填写	写在空格内 ,共	 十二题,	每题5分	•
1.	已知 a ,	b, c 为 =	三个递增的连	续奇数,试求	$a^2 - 2b^2 +$	c^2 的值.	
						答:	
2.	将一个〕	E整数 <i>n</i>		内将会产生出一	一个正整	数 $\frac{n(n+1)}{2}$.	若我们将5
	放入机器 么?	器内,将 原	听产生出的数	再放入机器内,	请问机制	2 器最后产生	出的数是什
						答:	
3.	西瓜的个	个数之和 l	北A多16个;	所采西瓜的个数 C与A所采西 乘积是多少?			
						答:	
4.	光线在圆	圆周上的	点 C 处反射,	O . 一東光由点 反射角∠ OCB 式反射,最后:	等于入身	け角∠ <i>MCO</i>	;接着这束
			P M	0	$\Big brace_A$	答:	
5	年龄分别	計为 1~19	岁的十九个人	小孩围成一个圆	引圈. 将戶	后有相邻两	个小孩的年

龄的差值记录下来. 请问这十九个差的总和的最大值是多少?

6.	化简求值 $\frac{(2^4+2^2+1)(4^4+4^2+1)(6^4+6^2+1)(8^4+8^2+1)(10^4+10^2+1)}{(3^4+3^2+1)(5^4+5^2+1)(7^4+7^2+1)(9^4+9^2+1)(11^4+11^2+1)}$.
	答 :
7.	已知 A 、 B 、 C 、 D 是平面上不共圆的四点. ΔABD , ADC , BCD , ABC 的外心分别为点 E 、 F 、 G 、 H ,线段 EG 与 FH 交于点 I . 若 AI =4, BI =3,则 CI 的长度是多少?
	答:
8.	某次考试,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为71分,所有成绩不及格的学生的平均分为56分.为了减少不及格的学生人数,老师给每位学生的成绩加上5分.加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分.已知该班学生人数介于15至30人之间,请问该班有多少位学生?
	答 :
9.	有多少个不同的直角三角形,以2009 ¹² 为一条直角边,且三条边都是整数? (全等三角形视为同一个三角形.)
	答 :
10.	若某个六位数,它的数码和可被 26 整除;这个六位数加 1,所得的数的数码之和也可被 26 整除.请问满足上述条件的最小的六位数是什么?
	答:
11.	在一圆周上有1个红点和2009个蓝点. <u>小丹</u> 计算所有顶点都是蓝点的凸多边形的个数, <u>小克</u> 计算有一个顶点是红点的凸多边形的个数. 请问他们两人所得的数之差值是多少?
	答 :
12.	小马在体育场卖饮料,矿泉水每瓶 4 元,汽水每瓶 7 元. 开始时他有 350 瓶饮料,虽然没有全部卖完,但是他的销售收入恰好是 2009 元. 试问:他至少卖出了多少瓶汽水?
	答:

第二部份: 计算及证明题, 必须写出计算或证明过程. 共三题, 每题 20 分.

1. 在一次国际象棋比赛中共有 10 位选手参赛,每位选手必须与其它选手恰好对弈一局.经过数局比赛后,发现任意三位选手之间都至少有两个人尚未对弈.请问截至此时,此棋赛最多已赛过多少局?

2. 点 *P* 为三角形 *ABC* 内部一点,使得∠*PBC*=30°, ∠*PBA*=8°, 且 ∠*PAB*=∠*PAC*=22°. 请问∠*APC* 为多少度?

3. 试求最小的正整数,它可以被表示为四个正整数的平方和,且可以整除某个 形如 $2^n + 15$ 的整数,其中n为正整数.